Features:

- RF Frequency: 24-30 GHz
- Gain of 20 dB.
- Output P1dB of 23.6 dBm.
- OIP3 is 31.3 dBm.
- Output Saturated Power: 25 dBm
- Noise Figure: 3.4dB
- Wideband Input and Output 50 ohm match.
- Variable Gain with Adjustable Bias.
- Bias: VDD=4V, VGG=0.55V, ID=173 mA.
- 0.1um GaAs pHEMT Technology.

Description:-

RFICDA06 Driver Amplifier operates from 24 – 30GHz and can be used in low power Ka band application or to drive the high power amplifier. The amplifier provides 20dB small signal gain and 24 dBm of Output P1dB. The input and output are matched to 50 ohms with on-chip DC blocking capacitors.

The device is specifically designed for use in 24 - 30 GHz frequency in point-to-point radios for cellular backhaul Application, 5G RF Transceiver & SATCOM. The Technology used to design DA is 0.1um GaAs pHEMT Process.

Pin Configuration:-

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>RF Ground</td>
</tr>
<tr>
<td>2</td>
<td>DRV_IN</td>
<td>RF Input</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>RF Ground</td>
</tr>
<tr>
<td>4</td>
<td>VDD 1</td>
<td>Drain Bias Voltage 1</td>
</tr>
<tr>
<td>5</td>
<td>VDD 2</td>
<td>Drain Bias Voltage 2</td>
</tr>
<tr>
<td>6</td>
<td>VDD 3</td>
<td>Drain Bias Voltage 3</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>RF Ground</td>
</tr>
<tr>
<td>8</td>
<td>DRV_OUT</td>
<td>RF Output</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>RF Ground</td>
</tr>
<tr>
<td>10</td>
<td>VGG 3</td>
<td>Drain Bias Voltage 3</td>
</tr>
<tr>
<td>11</td>
<td>VGG 2</td>
<td>Drain Bias Voltage 2</td>
</tr>
<tr>
<td>12</td>
<td>VGG 1</td>
<td>Drain Bias Voltage 1</td>
</tr>
</tbody>
</table>

Application:-

5G RF Transceiver.
Point to point communication system.
Backhaul application.
SATCOM.
IoT
Electrical Specification:

Freq = 24-30 GHz, VDD=4V, VGG=-0.55V, ID= 173 mA, Zo=50 Ω

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Test Condition</th>
<th>Units</th>
<th>Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>24 GHz</td>
<td>dB</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>27 GHz</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>30 GHz</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Output P1 dB</td>
<td>24 GHz</td>
<td>dBm</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td>27 GHz</td>
<td></td>
<td>23.1</td>
</tr>
<tr>
<td></td>
<td>30 GHz</td>
<td></td>
<td>22.5</td>
</tr>
<tr>
<td>OIP3</td>
<td>24 GHz</td>
<td></td>
<td>31.3</td>
</tr>
<tr>
<td>Pout= 20 dBm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∆f = 200MHz</td>
<td>27 GHz</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>30 GHz</td>
<td></td>
<td>32.7</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>24 GHz</td>
<td>dB</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>27 GHz</td>
<td></td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>30 GHz</td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>24 GHz</td>
<td>dB</td>
<td>-10.4</td>
</tr>
<tr>
<td></td>
<td>27 GHz</td>
<td></td>
<td>-13.5</td>
</tr>
<tr>
<td></td>
<td>30 GHz</td>
<td></td>
<td>-12.2</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>24 GHz</td>
<td>dB</td>
<td>-13.2</td>
</tr>
<tr>
<td></td>
<td>27 GHz</td>
<td></td>
<td>-18.6</td>
</tr>
<tr>
<td></td>
<td>30 GHz</td>
<td></td>
<td>-15.2</td>
</tr>
<tr>
<td>Isolation</td>
<td>24 GHz</td>
<td>dB</td>
<td>-60</td>
</tr>
<tr>
<td></td>
<td>27 GHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 GHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operating Bias Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Current (Id)</td>
<td>173 mA</td>
</tr>
<tr>
<td>Drain Voltage (VDD)</td>
<td>4 V</td>
</tr>
<tr>
<td>Gate Voltage (VGG)</td>
<td>-0.55 V</td>
</tr>
</tbody>
</table>
Typical Performance Curves:-

Gain Vs Freq

OIP3 VS Freq@Pout=20dBm

Input Return Loss

Output Return Loss
Driver Amplifier

Pout Vs Pin@27GHz

RFIC confidential property not to be copied or disclosed without prior authorization

05/17/2019
Disclaimer

RFIC Solutions Inc. All rights reserved. Information in this document is provided in connection with RFIC Solutions Inc ("RFIC") products. These materials are provided by RFIC as a service to its customers and may be used for informational purposes only. Except as provided in RFIC Terms and Conditions of Sale for such products or in any separate agreement related to this document, RFIC assumes no liability whatsoever. RFIC assumes no responsibility for errors or omissions in these materials. RFIC may make changes to specifications and product descriptions at any time, without notice. RFIC makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.